Performance Guide
This guide covers performance optimization techniques for WasmtimeRuntime.jl, focusing on currently implemented features and configuration options.
Engine Configuration for Performance (✅ Working)
Optimization Levels
Choose the right optimization level for your use case:
# Development: Fast compilation, slower execution
dev_config = WasmConfig(optimization_level = None)
# Balanced: Good compromise between compilation time and execution speed
balanced_config = WasmConfig(optimization_level = Speed)
# Production: Slower compilation, fastest execution
prod_config = WasmConfig(optimization_level = SpeedAndSize)
Performance Impact:
None
: ~10x faster compilation, ~3-5x slower executionSpeed
: Balanced performanceSpeedAndSize
: ~3-5x slower compilation, optimal execution speed
Debug Information Impact
Debug information affects both compilation time and memory usage:
# Production configuration - no debug info
prod_config = WasmConfig(
debug_info = false,
optimization_level = SpeedAndSize
)
# Development configuration - with debug info
dev_config = WasmConfig(
debug_info = true,
optimization_level = None
)
Impact: Debug info can increase:
- Compilation time by 20-30%
- Memory usage by 15-25%
- Binary size by 30-50%
Profiling Configuration
Enable profiling only when needed:
# Production without profiling
config = WasmConfig(profiling_strategy = NoProfilingStrategy)
# Performance analysis with profiling
profile_config = WasmConfig(
profiling_strategy = VTuneProfilingStrategy,
optimization_level = Speed # Don't use None with profiling
)
Resource Management Optimization (✅ Working)
Engine Reuse
Engines are expensive to create but cheap to share:
# ❌ Inefficient: Creating engines repeatedly
function bad_pattern()
for i in 1:100
engine = WasmEngine() # Expensive!
store = WasmStore(engine)
# ... use store
end
end
# ✅ Efficient: Reuse engine
function good_pattern()
engine = WasmEngine() # Create once
for i in 1:100
store = WasmStore(engine) # Cheap!
# ... use store
end
end
Module Caching
Compile modules once, instantiate many times:
# ✅ Efficient module management
struct ModuleCache
engine::WasmEngine
modules::Dict{String, WasmModule}
end
function get_module(cache::ModuleCache, path::String)
if !haskey(cache.modules, path)
wasm_bytes = read(path)
cache.modules[path] = WasmModule(cache.engine, wasm_bytes)
end
return cache.modules[path]
end
# Usage
cache = ModuleCache(WasmEngine(), Dict())
module1 = get_module(cache, "module.wasm") # Compiles
module2 = get_module(cache, "module.wasm") # Cache hit!
Store Lifecycle Management
Optimize store creation patterns:
# ✅ Batch operations per store
function batch_operations(engine, module_obj, operations)
store = WasmStore(engine)
instance = WasmInstance(store, module_obj)
# Note: Function calling not yet implemented
# This demonstrates the intended optimization pattern
# when function calling becomes available
return instance
# Store and instance cleaned up automatically
end
# ❌ One store per operation (inefficient when function calling is available)
function inefficient_operations(engine, module_obj, operations)
results = []
for op in operations
store = WasmStore(engine) # Expensive per operation!
instance = WasmInstance(store, module_obj)
# result = call(instance, op.func_name, op.params) # Future API
# push!(results, result)
end
return results
end
Function Call Optimization (📋 Coming Soon)
⚠️ Note: Function calling functionality is under development. Performance guidance will be added when implemented.
Type-Safe Function Calls
Use typed functions for better performance:
# ✅ Type-safe calls (faster)
add_func = TypedFunc{Tuple{Int32, Int32}, Int32}(func)
result = call(add_func, Int32(1), Int32(2))
# ❌ Generic calls with type conversion (slower)
result = call(instance, "add", [1, 2]) # Requires type inference and conversion
Batch Parameter Conversion
Pre-convert parameters for repeated calls:
# ✅ Efficient batch processing
function batch_process_optimized(instance, func_name, param_sets)
func = get_func(instance, func_name)
# Pre-convert all parameters
converted_params = [
[to_wasm(p) for p in params]
for params in param_sets
]
# Efficient calls with pre-converted parameters
return [call(func, params) for params in converted_params]
end
# ❌ Convert parameters on each call
function batch_process_slow(instance, func_name, param_sets)
return [call(instance, func_name, params) for params in param_sets]
end
Memory Management Performance
Memory Layout Optimization
Optimize memory access patterns:
# ✅ Sequential memory access (cache-friendly)
function process_memory_sequential(memory, start_offset, count)
for i in 0:count-1
offset = start_offset + i * 4 # 4 bytes per item
# Process memory at offset
end
end
# ❌ Random memory access (cache-unfriendly)
function process_memory_random(memory, offsets)
for offset in shuffle(offsets) # Random order
# Process memory at offset
end
end
Stack Size Optimization
Configure appropriate stack sizes:
# For recursive algorithms
large_stack_config = Config(max_wasm_stack = 4 * 1024 * 1024) # 4MB
# For simple computations
small_stack_config = Config(max_wasm_stack = 256 * 1024) # 256KB
# Memory-constrained environments
minimal_stack_config = Config(max_wasm_stack = 64 * 1024) # 64KB
Concurrent Execution Patterns
Engine Sharing Across Threads
# Shared engine, per-thread stores
const SHARED_ENGINE = Engine(Config(optimization_level = SpeedAndSize))
function parallel_wasm_execution(module_path, operations)
module_obj = WasmModule(SHARED_ENGINE, module_path)
# Use ThreadsX for parallel execution
results = ThreadsX.map(operations) do op
# Each thread gets its own store
store = Store(SHARED_ENGINE)
instance = Instance(store, module_obj)
return call(instance, op.func_name, op.params)
end
return results
end
Thread-Local Storage Pattern
# Thread-local caches for better performance
const THREAD_LOCAL_CACHE = Dict{Int, ModuleCache}()
function get_thread_cache()
tid = Threads.threadid()
if !haskey(THREAD_LOCAL_CACHE, tid)
THREAD_LOCAL_CACHE[tid] = ModuleCache(SHARED_ENGINE, Dict())
end
return THREAD_LOCAL_CACHE[tid]
end
Fuel and Resource Limiting
Smart Fuel Management
Balance security and performance:
# High-performance configuration (no fuel)
perf_config = Config(consume_fuel = false)
# Secure configuration with fuel limiting
secure_config = Config(consume_fuel = true)
function adaptive_fuel_management(store, estimated_complexity)
if estimated_complexity > 1000
# Complex operation: add more fuel
add_fuel!(store, 100000)
else
# Simple operation: minimal fuel
add_fuel!(store, 10000)
end
end
Epoch-Based Interruption
For long-running tasks:
# Enable epoch interruption for responsiveness
responsive_config = Config(
epoch_interruption = true,
consume_fuel = false # Use epochs instead of fuel
)
function long_running_computation(store, instance)
# Set reasonable epoch deadline
set_epoch_deadline!(store, 1000) # Allow 1000 epoch ticks
try
return call(instance, "long_computation", [])
catch e::WasmtimeError
if occursin("epoch", lowercase(e.message))
@warn "Computation interrupted by epoch deadline"
return nothing
else
rethrow(e)
end
end
end
Performance Monitoring
Timing Measurements
function benchmark_wasm_call(instance, func_name, params, iterations=1000)
# Warmup
for _ in 1:10
call(instance, func_name, params)
end
# Benchmark
times = Float64[]
for _ in 1:iterations
start_time = time_ns()
call(instance, func_name, params)
end_time = time_ns()
push!(times, (end_time - start_time) / 1e9) # Convert to seconds
end
return (
mean = sum(times) / length(times),
min = minimum(times),
max = maximum(times),
std = sqrt(sum((t - sum(times)/length(times))^2 for t in times) / length(times))
)
end
Memory Usage Monitoring
function monitor_memory_usage(f)
gc_before = GC.gc_num()
memory_before = Sys.total_memory()
result = f()
GC.gc() # Force garbage collection
gc_after = GC.gc_num()
memory_after = Sys.total_memory()
return (
result = result,
gc_runs = gc_after.poolalloc - gc_before.poolalloc,
memory_delta = memory_after - memory_before
)
end
Performance Profiling Integration
using Profile
function profile_wasm_execution(instance, func_name, params)
# Clear previous profiles
Profile.clear()
# Profile the execution
@profile begin
for _ in 1:100
call(instance, func_name, params)
end
end
# Print profile results
Profile.print()
end
Optimization Techniques
Instance Pooling
mutable struct InstancePool
engine::Engine
module_obj::WasmModule
available::Channel{Instance}
max_size::Int
current_size::Int
end
function InstancePool(engine, module_obj, max_size=10)
return InstancePool(
engine,
module_obj,
Channel{Instance}(max_size),
max_size,
0
)
end
function borrow_instance(pool::InstancePool)
if isready(pool.available)
return take!(pool.available)
elseif pool.current_size < pool.max_size
pool.current_size += 1
store = Store(pool.engine)
return Instance(store, pool.module_obj)
else
# Block until instance available
return take!(pool.available)
end
end
function return_instance(pool::InstancePool, instance::Instance)
put!(pool.available, instance)
end
# Usage with do-block for automatic return
function with_pooled_instance(f, pool::InstancePool)
instance = borrow_instance(pool)
try
return f(instance)
finally
return_instance(pool, instance)
end
end
JIT Warmup Strategy
function warmup_module(instance, exported_functions)
@info "Warming up WebAssembly module..."
for func_name in exported_functions
try
# Call with dummy parameters to trigger JIT compilation
# This is function-specific and requires knowledge of signatures
call(instance, func_name, [0])
catch e::WasmtimeError
# Expected for functions with different signatures
@debug "Warmup failed for $func_name: $(e.message)"
end
end
@info "Module warmup completed"
end
Performance Best Practices
Configuration Guidelines
- Production: Use
SpeedAndSize
optimization, disable debug info - Development: Use
None
optimization, enable debug info - Testing: Use
Speed
optimization, selective debug info - Profiling: Use
Speed
optimization, enable profiling strategy
Resource Management Guidelines
- Reuse engines across multiple stores and modules
- Cache compiled modules when loading the same WASM multiple times
- Batch operations within single store instances
- Use typed functions for frequently called functions
- Minimize parameter conversion overhead
Memory Guidelines
- Set appropriate stack sizes based on recursion depth
- Use fuel limiting only when security is required
- Prefer epoch interruption over fuel for long-running tasks
- Monitor memory usage in long-running applications
Concurrency Guidelines
- Share engines across threads safely
- Use thread-local stores for concurrent execution
- Implement instance pooling for high-throughput scenarios
- Avoid shared state between WebAssembly instances
By following these performance optimization techniques, you can achieve optimal performance for your WebAssembly applications while maintaining security and reliability.